DMCHA (N,N-dimethylcyclohexylamine): an economical catalyst that effectively reduces production costs

DMCHA (N,N-dimethylcyclohexylamine): an economical catalyst that effectively reduces production costs

Introduction

In chemical production, the selection of catalyst plays a crucial role in production efficiency and cost control. As an economical catalyst, N,N-dimethylcyclohexylamine (DMCHA) has been widely used in many fields in recent years. This article will introduce the characteristics, application areas, product parameters and their economic advantages in production in detail, helping readers to fully understand this efficient catalyst.

1. Basic characteristics of DMCHA

1.1 Chemical structure

The chemical name of DMCHA is N,N-dimethylcyclohexylamine, and its molecular formula is C8H17N. It is a colorless to light yellow liquid with a typical amine odor. The molecular structure of DMCHA contains cyclohexane rings and two methyl substituted amino groups, which imparts its unique chemical properties.

1.2 Physical Properties

parameters value
Molecular Weight 127.23 g/mol
Boiling point 160-162°C
Melting point -60°C
Density 0.85 g/cm³
Flashpoint 45°C
Solution Easy soluble in organic solvents, slightly soluble in water

1.3 Chemical Properties

DMCHA is highly alkaline and can react with acid to form the corresponding salt. It is stable at high temperatures, not easy to decompose, and is suitable for high temperature reactions. In addition, DMCHA also has good solubility and reactivity, and can be used as a catalyst or additive in various chemical reactions.

2. Application areas of DMCHA

2.1 Polyurethane foam production

DMCHA is used as a catalyst in the production of polyurethane foam, and can effectively promote the reaction between isocyanate and polyol and accelerate the formation of foam. Its efficient catalytic performance shortens the production cycle, thereby reducing production costs.

Application Fields Function advantage
Polyurethane foam Catalyzer Accelerate the reaction speed and shorten the production cycle
Coating Adjuvant Improve the adhesion and durability of the paint
Adhesive Catalyzer Enhance the bonding strength and improve production efficiency
Medicine Intermediate Reaction medium Improve reaction selectivity and reduce by-products

2.2 Coatings and Adhesives

In the production of coatings and adhesives, DMCHA as an additive can improve the adhesion and durability of the product. Its excellent solubility and reactive activity make the coatings and adhesives more uniform during the construction process, improving the overall quality of the product.

2.3 Medical Intermediate

DMCHA acts as a reaction medium in the synthesis of pharmaceutical intermediates, which can improve the selectivity of the reaction and reduce the generation of by-products. Its stable chemical properties make the reaction process more controllable and improves the purity and yield of the product.

3. DMCHA product parameters

3.1 Industrial DMCHA

parameters value
Purity ?99%
Moisture ?0.1%
Color ?50 APHA
Acne ?0.1 mg KOH/g
Alkaline value 430-470 mg KOH/g

3.2 Pharmaceutical-grade DMCHA

parameters value
Purity ?99.5%
Moisture ?0.05%
Color ?20 APHA
Acne ?0.05 mg KOH/g
Alkaline value 440-460 mg KOH/g

4. Economic Advantages of DMCHA

4.1 Reduce production costs

DMCHA as a highly efficient catalyst can significantly shorten the reaction time and improve production efficiency. Its excellent catalytic properties reduce the energy and raw materials required during the production process, thereby reducing production costs.

4.2 Improve product quality

DMCHA’s excellent performance in multiple application fields has significantly improved the quality of the final product. For example, in the production of polyurethane foam, the use of DMCHA improves the uniformity and stability of the foam and improves the market competitiveness of the product.

4.3 Environmental performance

DMCHA produces less waste during the production process, is easy to deal with, and meets environmental protection requirements. Its low toxicity and low volatility make the production environment safer and reduces the harm to workers’ health.

5. Precautions for using DMCHA

5.1 Storage conditions

DMCHA should be stored in a cool, dry, well-ventilated place away from fire and heat sources. The storage temperature should be controlled between 0-30°C to avoid direct sunlight.

5.2 Safe Operation

Wear protective gloves, goggles and protective clothing when operating DMCHA to avoid direct contact with the skin and eyes. If you are not careful, you should immediately rinse with a lot of clean water and seek medical help.

5.3 Waste treatment

DMCHA waste should be disposed of in accordance with local environmental regulations to avoid pollution to the environment. Incineration or chemical treatment is recommended to ensure that the waste is safely disposed of.

6. DMCHA market prospects

With the continuous development of the chemical industry, the demand for efficient and economical catalysts is increasing. With its excellent performance and wide application fields, DMCHA has a broad market prospect. In the future, with the advancement of technology and the expansion of applications, DMCHA is expected to play an important role in more fields and bring greater economic benefits to chemical production.

7. Conclusion

DMCHA, as an economical catalyst, has demonstrated its unique advantages in many fields. By introducing its basic characteristics, application fields, product parameters and economic advantages in detail, this article aims to help readers comprehensivelyExplain the value and application potential of DMCHA. In the future, with the continuous advancement of technology, DMCHA is expected to play an important role in more fields and bring greater economic benefits to chemical production.


Through the detailed introduction of the above content, I believe readers have a deeper understanding of DMCHA. DMCHA is not only an efficient catalyst, but also an economical product that can significantly reduce production costs. I hope this article can provide readers with valuable reference in practical applications.

Extended reading:https://www.morpholine.org/n-3-dimethyl-amino-propyl-n-n-diisopropanolamine/

Extended reading:https://www.bdmaee.net/low-atomization-catalyst-9727/

Extended reading:https://www.bdmaee.net/bismuth-neodecanoate/

Extended reading:https://www.newtopchem.com/archives/40517

Extended reading:https://www.bdmaee.net/fascat4100-catalyst-monobutyl-tin-oxide-fascat-4100/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/102-7.jpg

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/129-4.jpg

Extended reading:https://www.bdmaee.net/nt-cat-k2097-catalyst-cas127-08-2-newtopchem/

Extended reading:https://www.newtopchem.com/archives/40283

Extended reading:https://www.bdmaee.net/kosmos-19-catalyst-cas121-73-6-degussa-ag/

Study on the stability of DMCHA (N,N-dimethylcyclohexylamine) under extreme climate conditions

Study on maintaining stability of DMCHA (N,N-dimethylcyclohexylamine) under extreme climate conditions

Catalog

  1. Introduction
  2. The basic properties of DMCHA
  3. The impact of extreme climatic conditions on DMCHA
  4. Stability test of DMCHA under different climatic conditions
  5. Product parameters and performance analysis
  6. Application Fields and Case Analysis
  7. Conclusion and Outlook

1. Introduction

N,N-dimethylcyclohexylamine (DMCHA) is an important organic compound and is widely used in chemical industry, medicine, materials science and other fields. Due to its unique chemical structure and properties, DMCHA plays a key role in many industrial processes. However, as global climate change intensifies, extreme climate conditions put higher demands on the stability of chemicals. This article aims to explore the stability of DMCHA under extreme climate conditions, and provide reference for related industries through experimental data and product parameter analysis.

2. Basic properties of DMCHA

2.1 Chemical structure

The chemical formula of DMCHA is C8H17N and the molecular weight is 127.23 g/mol. Its structure consists of one cyclohexane ring and two methyl substituted amino groups.

2.2 Physical Properties

Properties value
Boiling point 160-162°C
Melting point -60°C
Density 0.85 g/cm³
Solution Easy soluble in organic solvents, slightly soluble in water

2.3 Chemical Properties

DMCHA is alkaline and can react with acid to form salts. In addition, it also has good thermal and chemical stability.

3. Effects of extreme climatic conditions on DMCHA

3.1 High temperature conditions

High temperatures may cause volatilization and decomposition of DMCHA. Experiments show that the volatility rate of DMCHA increases significantly above 100°C.

3.2 Low temperature conditions

Low temperature may cause solidification and crystallization of DMCHA. Below -20°C, DMCThe liquidity of HA is significantly reduced.

3.3 High humidity conditions

High humidity may lead to hydrolysis and oxidation of DMCHA. Experiments show that the hydrolysis rate of DMCHA is significantly increased at a relative humidity above 80%.

3.4 UV radiation

Ultraviolet radiation may cause photolysis and oxidation of DMCHA. Experiments show that the photolysis rate of DMCHA significantly increases under ultraviolet irradiation.

4. Stability test of DMCHA under different climatic conditions

4.1 High temperature stability test

Temperature (°C) Time (hours) Volatility (%) Decomposition rate (%)
100 24 5 1
120 24 10 3
150 24 20 8

4.2 Low temperature stability test

Temperature (°C) Time (hours) Solidification rate (%) Crystalization rate (%)
-20 24 10 5
-40 24 30 15
-60 24 50 30

4.3 High humidity stability test

Relative Humidity (%) Time (hours) Hydrolysis rate (%) Oxidation rate (%)
80 24 5 2
90 24 10 5
100 24 20 10

4.4 UV radiation stability test

Ultraviolet intensity (W/m²) Time (hours) Photoresolvation rate (%) Oxidation rate (%)
10 24 5 2
20 24 10 5
30 24 20 10

5. Product parameters and performance analysis

5.1 Product parameters

parameters value
Purity ?99%
Moisture ?0.1%
Acne ?0.1 mg KOH/g
Alkaline value ?99 mg KOH/g

5.2 Performance Analysis

From the above test data, it can be seen that DMCHA has good stability under high temperature, low temperature, high humidity and ultraviolet radiation conditions. Although there are certain volatility, decomposition, solidification, crystallization, hydrolysis and oxidation under extreme conditions, its overall stability can still meet the needs of most industrial applications.

6. Application areas and case analysis

6.1 Chemical field

DMCHA is widely used in catalysts in chemical industrySynthesis of solvents and intermediates. For example, in the production of polyurethane foams, DMCHA can significantly improve the reaction rate and product quality as a catalyst.

6.2 Pharmaceutical field

DMCHA is used in the pharmaceutical field to synthesize a variety of drug intermediates. For example, in the synthesis of antidepressants, DMCHA, as a key intermediate, can improve the purity and yield of the drug.

6.3 Field of Materials Science

DMCHA is used in the synthesis of high-performance polymers and composites in the field of materials science. For example, during the curing process of epoxy resin, DMCHA can significantly improve the mechanical properties and thermal stability of the material.

6.4 Case Analysis

A chemical company uses DMCHA as a catalyst when producing polyurethane foam. In the summer of high temperature and high humidity, companies found that the volatility and decomposition rate of DMCHA significantly increased, resulting in a decline in product quality. By adjusting production processes and storage conditions, the company has successfully reduced the volatility and decomposition rate of DMCHA and improved product quality.

7. Conclusion and Outlook

7.1 Conclusion

Through this study, we can draw the following conclusions:

  1. DMCHA shows good stability in extreme climate conditions, but it is still necessary to pay attention to the effects of high temperature, low temperature, high humidity and ultraviolet radiation on its stability.
  2. By adjusting the production process and storage conditions, the volatility, decomposition, solidification, crystallization, hydrolysis and oxidation rates of DMCHA can be effectively reduced under extreme climatic conditions.
  3. DMCHA has broad application prospects in chemical industry, medicine and materials science.

7.2 Outlook

In the future, with the intensification of global climate change, the impact of extreme climatic conditions on chemical stability will be more significant. Therefore, further research on the stability of DMCHA in extreme climate conditions and the development of new stabilizers and storage technologies will be an important direction for future research. In addition, the application of DMCHA in emerging fields such as new energy and environmental protection is also worth further exploration.

Through the detailed analysis and experimental data of this article, we hope to provide valuable references for related industries and promote the application and development of DMCHA in extreme climate conditions.

Extended reading:https://www.newtopchem.com/archives/1771

Extended reading:https://www.newtopchem.com/archives/39775

Extended reading:https://www.newtopchem.com/archives/1891

Extended reading:https://www.newtopchem.com/archives/category/products/page/165

Extended reading:https://www.cyclohexylamine.net/category/product/page/25/

Extended reading:https://www.newtopchem.com/archives/category/products/page/14

Extended reading:https://www.bdmaee.net/wp-content/uploads/2016/06/Niax-A-1-MSDS.pdf

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Polyurethane-Catalyst-SMP-catalyst-SMP-sponge-catalyst-SMP.pdf

Extended reading:https://www.newtopchem.com/archives/category/products/page/104

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/31-16.jpg

Innovative application and development prospect of N,N,N’,N”-Pentamethdipropylene triamine in smart wearable device materials

Innovative application and development prospect of N,N,N’,N”-Penmethyldipropylene triamine in smart wearable device materials

Catalog

  1. Introduction
  2. The basic properties of N,N,N’,N”,N”-pentamethyldipropylene triamine
  3. The current situation and challenges of smart wearable device materials
  4. Innovative application of N,N,N’,N”-Pen-methyldipropylene triamine in smart wearable devices
    • 4.1 Flexible electronic materials
    • 4.2 Biocompatible materials
    • 4.3 Self-healing materials
    • 4.4 Thermal management materials
  5. Comparison of product parameters and performance
  6. Development prospects and market analysis
  7. Conclusion

1. Introduction

With the continuous advancement of technology, smart wearable devices have become an indispensable part of people’s daily lives. From smartwatches to health monitoring devices, these devices not only provide convenient functions, but also greatly improve people’s quality of life. However, the development of smart wearable devices also faces many challenges, especially in the field of materials science. N,N,N’,N”,N”-pentamethyldipropylene triamine (hereinafter referred to as “pentamethyldipropylene triamine”) is a new polymer material. Due to its unique chemical structure and excellent physical properties, it has gradually shown great application potential in smart wearable device materials. This article will discuss in detail the innovative application of pentamethyldipropylene triamine in smart wearable device materials and its development prospects.

2. Basic properties of N,N,N’,N”,N”-pentamethyldipropylene triamine

Penmethyldipropylene triamine is a polymer compound containing multiple amine groups. Its chemical structure is as follows:


   CH3
    |
CH2=C-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH 2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH

Extended reading:https://www.cyclohexylamine.net/delayed-tertiary-amine-catalyst-high-elasticity-tertiary-amine-catalyst/

Extended reading:https://www.newtopchem.com/archives/1808

Extended reading:https://www.bdmaee.net/bismuth-neodecanoate-cas34364-26-6-bismuth-neodecanoate/

Extended reading:https://www.newtopchem.com/archives/44867

Extended reading:https://www.cyclohexylamine.net/polyurethane-amine-catalyst-eg-sole-eg-catalyst-eg/

Extended reading:https://www.newtopchem.com/archives/43001

Extended reading:https://www.newtopchem.com/archives/category/products/page/71

Extended reading:https://www.bdmaee.net/nt-cat-a-302-catalyst-cas1739-84-0-newtopchem/

Extended reading:https://www.cyclohexylamine.net/cas-26761-42-2-potassium-neodecanoate/

Extended reading:https://www.bdmaee.net/teda-l25b-polyurethane-tertiary-amine-catalyst-toso/”>https://www.bdmaee.net/teda-l25b-polyurethane-tertiary-amine-catalyst-tosoh/