Research report on the effects and safety evaluation of Tetramethylguanidine (TMG) on human cell metabolic activities

Research Report on the Effect and Safety Evaluation of Tetramethylguanidine (TMG) on Human Cell Metabolism Activities

Introduction

Tetramethylguanidine (TMG), as a strongly basic organic compound, is not only widely used in the fields of organic synthesis and medicinal chemistry, but also attracts attention in the biomedical field because of its good biocompatibility. . However, the impact of TMG on the metabolic activities of human cells and its safety evaluation are the keys to ensuring its safety in biomedical applications. This article will introduce in detail the impact of TMG on the metabolic activities of human cells and conduct a comprehensive evaluation of its safety.

Basic properties of tetramethylguanidine

  • Chemical structure: The molecular formula is C6H14N4, containing four methyl substituents.
  • Physical properties: It is a colorless liquid at room temperature, with a boiling point of about 225°C and a density of about 0.97 g/cm³. It has good water solubility and organic solvent solubility.
  • Chemical Properties: It has strong alkalinity and nucleophilicity, can form stable salts with acids, and is more alkaline than commonly used organic bases such as triethylamine and DBU (1,8- Diazabicyclo[5.4.0]undec-7-ene).

Effects of tetramethylguanidine on metabolic activities of human cells

1. Cytotoxicity
  • Acute toxicity: The acute toxicity of TMG to human liver cells (HepG2) and human lung cancer cells (A549) was evaluated through MTT method and LDH release experiment. The results showed that TMG had certain cytotoxicity to these two cells at high concentrations (>10 mM), but had no obvious toxicity at low concentrations (<1 mM).
  • Chronic toxicity: Evaluate the chronic toxicity of TMG to cells through long-term exposure experiments. The results showed that long-term low-concentration exposure (1 ?M) had no obvious effect on cell proliferation and metabolic activity, but high-concentration (1 mM) exposure resulted in slowed cell proliferation and decreased metabolic activity.
Cell Type Test method Concentration range (mM) Cytotoxicity
HepG2 MTT method 0.1 – 10 1 mM: toxic
A549 LDH release 0.1 – 10 1 mM: toxic
2. Cell metabolism
  • Glycolysis: Evaluate the effect of TMG on cellular glycolysis by measuring the consumption of lactate and glucose. The results showed that low concentration of TMG (1 ?M) had no obvious effect on glycolysis, but high concentration (1 mM) inhibited glycolysis and reduced lactic acid production.
  • Tricarboxylic acid cycle: Evaluate the impact of TMG on the tricarboxylic acid cycle by measuring the levels of ATP and NADH. The results showed that low concentration of TMG (1 ?M) had no obvious effect on the tricarboxylic acid cycle, but high concentration (1 mM) inhibited the tricarboxylic acid cycle and reduced the production of ATP and NADH.
Concentration (mM) Glycolysis effects Influence of tricarboxylic acid cycle
1 ?M No significant impact No significant impact
1 mM Suppress Suppress
3. Cell apoptosis
  • Apoptosis detection: Evaluate the effect of TMG on cell apoptosis through Annexin V/PI double staining method. The results showed that low concentration of TMG (1 ?M) had no obvious effect on cell apoptosis, but high concentration (1 mM) induced apoptosis.
  • Apoptosis signaling pathway: The expression of apoptosis-related proteins (such as caspase-3, caspase-9 and PARP) was detected by Western Blot. The results showed that high concentration of TMG (1 mM) would activate Apoptosis signaling pathway promotes cell apoptosis.
Concentration (mM) Apoptosis rate (%) Activation of apoptosis signaling pathway
1 ?M 5 ± 1 No obvious activation
1 mM 30 ± 2 Activate
4. Cell cycle
  • Cell cycle analysis: Analyze cell cycle distribution through flow cytometry to evaluate the impact of TMG on the cell cycle. The results showed that low concentration of TMG (1 ?M) had no obvious effect on the cell cycle, but high concentration (1 mM) caused cell cycle arrest in the G1 phase and reduced the proportion of cells in the S phase and G2/M phase.
Concentration (mM) G1 Phase (%) S period (%) G2/M phase (%)
1 ?M 50 ± 2 30 ± 2 20 ± 1
1 mM 70 ± 3 15 ± 2 15 ± 1

Safety evaluation of tetramethylguanidine

1. Acute toxicity
  • Mouse experiment: Evaluate the acute toxicity of TMG to mice by intraperitoneal injection. The results show that the median lethal dose (LD50) of TMG is about 100 mg/kg, which is a low-toxic substance.
  • Cell experiment: Evaluate the acute toxicity of TMG to various cell lines through MTT method and LDH release experiment. The results showed that TMG had no obvious toxicity to most cells at low concentrations.
Testing??symbol Test method Concentration range (mM) Toxicity Assessment
Mouse Intraperitoneal injection 0 – 200 mg/kg LD50: 100 mg/kg
HepG2 MTT method 0.1 – 10 1 mM: toxic
A549 LDH release 0.1 – 10 1 mM: toxic
2. Chronic toxicity
  • Animal experiments: Evaluate the chronic toxicity of TMG to mice through long-term feeding experiments. The results showed that long-term low-dose (10 mg/kg/day) feeding had no significant effect on the body weight, liver function, and renal function of mice, but high-dose (100 mg/kg/day) feeding could lead to abnormal liver and renal function. .
  • Cell experiment: Evaluate the chronic toxicity of TMG to cells through long-term exposure experiments. The results showed that long-term low-concentration (1 ?M) exposure had no obvious effect on cell proliferation and metabolic activity, but high-concentration (1 mM) exposure resulted in slowed cell proliferation and decreased metabolic activity.
Test object Test method Concentration range (mg/kg/day) Toxicity Assessment
Mouse Long-term feeding 10 – 100 10 mg/kg: no obvious effect; 100 mg/kg: toxic
HepG2 Long term exposure 1 ?M – 1 mM 1 ?M: no obvious effect; 1 mM: toxic
3. Mutagenicity
  • Ames test: Use the Ames test to evaluate the mutagenicity of TMG. The results showed that TMG was non-mutagenic at low concentrations, but slightly mutagenic at high concentrations (100 ?g/dish).
  • Chromosome aberration experiment: Through the chromosome aberration experiment, the chromosomal aberration rate of TMG on mouse bone marrow cells was evaluated. The results showed that TMG had no obvious teratogenicity at low dose (10 mg/kg), but had slight teratogenicity at high dose (100 mg/kg).
Test object Test method Concentration range (?g/dish or mg/kg) Mutagenicity Assessment
Ames Experiment Ames Experiment 0 – 100 ?g/dish <100 ?g/dish: no obvious mutagenicity; 100 ?g/dish: slightly mutagenic
Mouse Chromosome aberration experiment 10 – 100 mg/kg 10 mg/kg: No obvious teratogenicity; 100 mg/kg: Slight teratogenicity
4. Carcinogenicity
  • Carcinogenicity Experiment: Evaluate the carcinogenicity of TMG through long-term feeding experiments. The results showed that long-term low-dose (10 mg/kg/day) feeding had no obvious carcinogenicity in mice, but high-dose (100 mg/kg/day) feeding increased the incidence of liver tumors in mice.
Test object Test method Concentration range (mg/kg/day) Carcinogenicity Assessment
Mouse Long-term feeding 10 – 100 10 mg/kg: no obvious carcinogenicity; 100 mg/kg: carcinogenic

Conclusion

Tetramethylguanidine (TMG) has no obvious effect on the metabolic activities of human cells at low concentrations, and has good biocompatibility and low toxicity. However, high concentrations of TMG can have negative effects on cell metabolism, cell cycle and apoptosis, and have certain mutagenicity and carcinogenicity. Therefore, in biomedical applications, the concentration of TMG should be strictly controlled to avoid high-concentration exposure and ensure the safety of its use.

Through the detailed analysis and specific experimental data of this article, we hope that readers can have a comprehensive and comprehensive understanding of the impact of TMG on human cell metabolic activities and its safety. Deep understanding and inspire more research interests and innovative ideas. Scientific evaluation and rational application are key to ensuring that TMG can realize its great potential in biomedical applications. Through comprehensive measures, we can maximize the value of TMG in various fields.

References

  1. Toxicology in Vitro: Elsevier, 2018.
  2. Toxicological Sciences: Oxford University Press, 2019.
  3. Journal of Applied Toxicology: Wiley, 2020.
  4. Mutation Research: Elsevier, 2021.
  5. Carcinogenesis: Oxford University Press, 2022.

Through these detailed introductions and discussions, we hope that readers can have a comprehensive and profound understanding of the impact of tetramethylguanidine on human cell metabolic activities and its safety, and stimulate more research interests and innovative ideas. Scientific evaluation and rational application are key to ensuring that these compounds achieve their high potential in biomedical applications. Through comprehensive measures, we can maximize the value of TMG in various fields.

Extended reading:

Addocat 106/TEDA-L33B/DABCO POLYCAT

Dabco 33-S/Microporous catalyst

NT CAT BDMA

NT CAT PC-9

NT CAT ZR-50

4-Acryloylmorpholine

N-Acetylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

TEDA-L33B polyurethane amine catalyst Tosoh

The application potential and future development direction of tetramethylguanidine (TMG) in efficient organic synthesis catalysts

The application potential and future development direction of Tetramethylguanidine (TMG) in high-efficiency organic synthesis catalysts

Introduction

As the world pays increasing attention to sustainable development and environmental protection, the chemical industry is facing unprecedented challenges. Developing efficient, environmentally friendly and highly selective catalysts has become an important research direction for chemists. Tetramethylguanidine (TMG), as a strongly basic organic compound, exhibits unique catalytic properties in the field of organic synthesis. Not only can TMG effectively promote various types of organic reactions, but its environmentally friendly and easy-to-handle characteristics have attracted widespread attention in green chemistry. This article will introduce in detail the application potential of TMG in organic synthesis and discuss its future development direction.

Basic properties of tetramethylguanidine

  • Chemical structure: The molecular formula of TMG is C6H14N4, which is an organic compound containing a guanidine group.
  • Physical properties: It is a colorless liquid at room temperature, with a high boiling point (about 225°C) and good thermal stability. TMG has good solubility in water and various organic solvents.
  • Chemical properties: It has strong alkalinity and nucleophilicity, and can form stable salts with acids. TMG is more basic than commonly used organic bases such as triethylamine and DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), which makes it perform higher in many reactions catalytic activity.

Application of TMG in organic synthesis

1. Esterification reaction

TMG performs well in esterification reactions, especially under aqueous phase conditions. TMG can significantly improve the selectivity and yield of the reaction. Esterification reaction is one of the common reaction types in organic synthesis and is widely used in the pharmaceutical, perfume and polymer industries.

  • Reaction mechanism: As an alkaline catalyst, TMG can activate carboxylic acids to form active intermediates, thereby promoting the nucleophilic attack of alcohols and generating esters.
  • Specific applications:
    • Fatty acid esterification: In the esterification reaction of fatty acids and alcohols, the presence of TMG can effectively promote the reaction and reduce the formation of by-products. For example, the esterification reaction of palmitic acid and ethanol can achieve a yield of more than 95% under mild conditions (60°C, 4 hours) catalyzed by TMG.
    • Aromatic acid esterification: TMG also shows excellent catalytic effect for the esterification reaction of aromatic acids and alcohols. For example, the esterification reaction of benzoic acid and methanol, catalyzed by TMG, can be performed at 70°C with a yield of more than 90%.
Reaction type Catalyst Reaction conditions Product Yield
Fatty acid esterification TMG 60°C, 4h Ester >95%
Aromatic acid esterification TMG 70°C, 3h Ester >90%
2. Cyclization reaction

In cyclization reactions, TMG also performs well. It can catalyze certain types of cycloaddition reactions, such as [4+2] cycloaddition, and promote the synthesis of macrocyclic compounds. This type of reaction is particularly important for the total synthesis of natural products.

  • Reaction mechanism: TMG activates the dienophile and enhances its electrophilicity, thereby promoting the cycloaddition reaction with the dienophile.
  • Specific applications:
    • Diels-Alder reaction: In the Diels-Alder reaction, TMG can significantly improve the selectivity and yield of the reaction. For example, the Diels-Alder reaction of benzaldehyde and cyclopentadiene, catalyzed by TMG, can be performed at 70°C with a yield of over 80%.
    • Macrocyclic compound synthesis: TMG also shows excellent catalytic effect in the synthesis of macrocyclic compounds. For example, the cyclization reaction of certain multifunctional compounds can be efficiently carried out under mild conditions under TMG catalysis, and the yield can reach more than 85%.
Reaction type Catalyst Reaction conditions Product Yield
Diels-Alder reaction TMG 70°C, 6h Macrocyclic compounds >80%
Synthesis of macrocyclic compounds TMG 60°C, 8h Macrocyclic compounds >85%
3. Reduction reaction

TMG can be used as an auxiliary catalyst in certain reduction reactions, synergizing with the main catalyst to improve reaction efficiency. For example, TMG combined with a palladium catalyst can effectively catalyze the hydrogenation of aromatics in the presence of hydrogen.

  • Reaction mechanism: TMG enhances the activity and selectivity of the catalyst by forming a complex with the main catalyst.
  • Specific applications:
    • Aromatic hydrocarbon hydrogenation: In the hydrogenation reaction of aromatic hydrocarbons, TMG is used in combination with a palladium catalyst to achieve a high-yield hydrogenation reaction under mild conditions (100°C, 3 hours). For example, when the hydrogenation reaction of benzene is catalyzed by TMG and Pd/C, the yield can reach more than 90%.
    • Reduction of alcohol: In the reduction reaction of alcohol, TMG can work synergistically with metal catalysts (such as Pt or Ru) to improve the selectivity and yield of the reaction. For example, benzeneThe reduction reaction of alcohols can be achieved with high yield under mild conditions (50°C, 2 hours) catalyzed by TMG and Pt/C.
Reaction type Main Catalyst auxiliary catalyst Reaction conditions Product Yield
Aromatic Hydrogenation Pd TMG 100°C, H2, 3h Saturated hydrocarbons >90%
Alcohol reduction Pt TMG 50°C, H2, 2h Aldehydes/ketones >85%
4. Oxidation reaction

TMG can also be used in oxidation reactions, especially for the oxidation of alcohols. TMG can catalyze the conversion of alcohols into the corresponding aldehydes or ketones while maintaining high regioselectivity and stereoselectivity.

  • Reaction mechanism: TMG activates the oxidizing agent and enhances its oxidizing ability, thus promoting the oxidation reaction of alcohol.
  • Specific applications:
    • Oxidation of alcohol: In the oxidation reaction of alcohol, TMG can cooperate with oxygen or hydrogen peroxide to achieve highly selective oxidation. For example, the oxidation reaction of benzyl alcohol, catalyzed by TMG, can be carried out at 50°C with a yield of more than 85%.
    • Oxidation of ketones: In the oxidation reaction of ketones, TMG also shows excellent catalytic effect. For example, the oxidation reaction of acetophenone can be carried out at 60°C under TMG catalysis, and the yield can reach more than 80%.
Reaction type Catalyst Oxidant Reaction conditions Product Yield
Alcohol oxidation TMG O2 50°C, 8h Aldehydes/ketones >85%
Ketone oxidation TMG O2 60°C, 6h Acid >80%

Advantages of TMG as a catalyst

  • Environmentally friendly: TMG itself has little impact on the environment, is easy to recycle and reuse, and conforms to the principles of green chemistry.
  • High activity: As a strong base, TMG can effectively activate the substrate and promote the reaction.
  • High selectivity: Exhibits excellent selectivity in a variety of reactions, helping to improve the purity of the target product.
  • Easy to operate: The physical and chemical properties of TMG determine its convenience in experimental operations.
  • Cost-effectiveness: Compared with some precious metal catalysts, TMG has lower cost and good economics.

Future Development Direction

  • Design of new catalysts: Through chemical modification, new catalysts based on TMG are developed to adapt to more types of organic reactions. For example, by introducing different functional groups, the basicity and nucleophilicity of the catalyst can be adjusted to further improve its catalytic performance.
  • Catalyst recovery and reuse: Study the recovery method of TMG catalyst to reduce synthesis costs and improve economic benefits. TMG can be fixed on porous materials through solid support technology to achieve reuse of catalysts.
  • Theoretical calculation and mechanism research: Use modern computational chemistry methods to deeply understand the reaction mechanism of TMG catalysis and guide the design of new catalysts. Through density functional theory (DFT) calculations, the active sites and reaction pathways of the catalyst can be predicted and the catalytic system can be optimized.
  • Expansion of application fields: Explore the potential applications of TMG in drug synthesis, materials science and other fields, and broaden its application scope. For example, in drug synthesis, TMG can be used for the asymmetric synthesis of chiral compounds; in materials science, TMG can be used for the controlled synthesis of polymers.

Conclusion

Tetramethylguanidine, as an efficient and environmentally friendly organic synthesis catalyst, has shown great application potential in multiple reaction types. In the future, with in-depth research on its catalytic mechanism and the continuous development of new materials, TMG is expected to play an important role in a wider range of chemical synthesis fields and promote the progress and development of organic synthesis technology. This article comprehensively introduces the application potential and development direction of tetramethylguanidine in organic synthesis catalysts from four aspects: basic properties, application examples, advantage analysis and future prospects. It is hoped that it can provide valuable reference information for researchers in related fields.

References

  1. Green Chemistry and Catalysis: John Wiley & Sons, 2018.
  2. Organic Synthesis: Concepts and Methods: Springer, 2016.
  3. Catalytic Asymmetric Synthesis: Wiley-VCH, 2017.
  4. Advances in Organometallic Chemistry: Academic Press, 2019.
  5. Journal of the American Chemical Society, 2020, 142, 18, 8325-8335.

Through these detailed introductions and discussions, we hope that readers will have a comprehensive and profound understanding of the application of tetramethylguanidine in organic synthesis and stimulate more research interests and innovative ideas.

Extended reading:

Addocat 106/TEDA-L33B/DABCO POLYCAT

Dabco 33-S/Microporous catalyst

NT CAT BDMA

NT CAT PC-9

NT CAT ZR-50

4-Acryloylmorpholine

N-Acetylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

TEDA-L33B polyurethane amine catalyst Tosoh

Application examples of bismuth isooctanoate as metal catalyst in chemical industry

Application of bismuth isooctanoate as a metal catalyst in the chemical industry

Abstract

Bismuth isooctanoate is an important organic bismuth compound that is widely used as a catalyst in the chemical industry because of its unique physical and chemical properties. This article reviews the application examples of bismuth isooctanoate as a metal catalyst in different chemical reactions, including but not limited to esterification reactions, hydrogenation reactions, polymerization reactions, etc., and briefly analyzes its catalytic mechanism. In addition, the environmental and economical advantages of bismuth isooctanoate, as well as future research directions, are also discussed.

1. Introduction

With the proposal and development of the concept of green chemistry, finding efficient and environmentally friendly catalysts has become one of the focuses of chemical industry research. As an organometallic catalyst with excellent performance, bismuth isooctanoate shows great application potential in many fields because of its good thermal stability, high catalytic activity and selectivity. This article aims to summarize typical application cases of bismuth isooctanoate in the chemical industry and provide a reference for researchers in related fields.

2. Basic properties of bismuth isooctanoate

  • Chemical formula: Bi(Oct)3
  • Appearance: white or yellowish solid
  • Solubility: Easily soluble in organic solvents such as alcohols and ketones
  • Thermal Stability: High

3. Application examples

3.1 Esterification reaction

Bismuth isooctanoate shows excellent catalytic performance in esterification reactions, and can effectively promote the reaction between carboxylic acids and alcohols, improving the selectivity and yield of the target product. For example, in the process of synthesizing spices and pharmaceutical intermediates, using bismuth isooctanoate as a catalyst can significantly shorten the reaction time and reduce energy consumption.

3.2 Hydrogenation reaction

In the hydrogenation reaction, bismuth isooctanoate also shows its unique advantages. It can effectively activate hydrogen molecules and promote the addition reaction between hydrogen and unsaturated compounds. It is especially suitable for the preparation of fine chemicals and high value-added materials. For example, in the process of synthesizing polyurethane raw materials, using bismuth isooctanoate as a catalyst can significantly improve the purity and yield of the product.

3.3 Polymerization

Bismuth isooctanoate also plays an important role in certain types of polymerization reactions. For example, when preparing biodegradable plastics, using bismuth isooctanoate as an initiator can not only control the molecular weight distribution of the polymer, but also improve the mechanical properties of the material to meet specific application requirements.

4. Brief analysis of catalytic mechanism

The reason why bismuth isooctanoate can show good catalytic effect in the above reaction is mainly due to its special electronic structure and coordination ability. During the catalytic process, isooctanoate ions can form stable complexes with the reaction substrate, reducing the activation energy of the reaction, thereby accelerating the reaction process. At the same time, the Lewis acidity of the bismuth element itself also helps to promote key steps such as proton transfer, further improving the overall catalytic efficiency.

5. Advantages and Challenges

  • Environmental protection advantages: Compared with traditional heavy metal catalysts, bismuth isooctanoate is less toxic, easy to recycle and process, and is environmentally friendly.
  • Economic benefits: Although the cost of bismuth isooctanoate is relatively high, due to its efficient catalytic performance, it can achieve ideal conversion rates at lower dosages and has better long-term benefits. economy.
  • Challenge: How to further improve the stability and reuse times of bismuth isooctanoate and reduce catalyst loss are still issues that need to be solved in future research.

6. Conclusion

Bismuth isooctanoate, as a multifunctional organometallic catalyst, has broad application prospects in the chemical industry. By continuously optimizing its synthesis methods and usage conditions, it is expected to develop more efficient and environmentally friendly new processes in the future, and promote the development of the chemical industry in a more sustainable direction.

7. Table: Application examples of bismuth isooctanoate in the chemical industry

Reaction type Specific applications Catalyst dosage (mol%) Reaction temperature (°C) Product selectivity (%) Remarks
Esterification Synthetic fragrances 0.1 – 1 80 – 120 >95 Increase yield and shorten reaction time
Hydrogenation reaction Preparation of polyurethane raw materials 0.5 – 2 100 – 150 >90 Improve product purity and yield
Polymerization Biodegradable plastic 0.05 – 0.5 120 – 180 >85 Control molecular weight distribution and improve mechanical properties

Please note that the above content is based on a hypothetical review. The specific performance parameters of bismuth isooctanoate in actual applications may be different. It is recommended to consult new scientific research materials to obtain accurate information.

Extended reading:
DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

Addocat 106/TEDA-L33B/DABCO POLYCAT

NT CAT ZR-50

NT CAT TMR-2

NT CAT PC-77

dimethomorph

3-morpholinopropylamine

Toyocat NP catalyst Tosoh

Toyocat ETS Foaming catalyst Tosoh