Application of tetramethylguanidine as additive for high temperature resistant and anti-corrosion coatings

In the chemical, electric power, petroleum, steel and other industries, equipment and structures are often exposed to extreme environmental conditions, including high temperatures and corrosive media and mechanical wear. In order to protect these facilities and extend their service life, high temperature resistant anti-corrosion coatings have become an indispensable means of protection. Tetramethylguanidine (TMG), as a multifunctional organic compound, has received widespread attention in recent years for its unique role in improving coating performance.

Basic properties of tetramethylguanidine

Tetramethylguanidine, chemical formula C5H13N3, CAS number 80-70-6, is a strongly alkaline organic compound. It has good thermal stability, can maintain its chemical properties in high temperature environments, and is not easy to decompose. In addition, tetramethylguanidine also has excellent anti-corrosion properties, which makes it show great potential in the field of coating additives.

The mechanism of action as a coating additive

When tetramethylguanidine is added to high temperature resistant anti-corrosion coatings, it mainly works in the following ways:

  1. Enhance the thermal stability of the coating: The high thermal stability of tetramethylguanidine enables it to maintain the integrity of the molecular structure in high temperature environments and prevent the coating from decomposing at high temperatures, thus Maintain coating integrity and protective function.
  2. Improve the corrosion resistance of the coating: The strong alkalinity of tetramethylguanidine can neutralize the acidic corrosive medium, form a protective film, prevent the corrosive medium from direct contact with the substrate, and greatly reduce corrosion. rate.
  3. Promote coating curing: Tetramethylguanidine, as a catalyst, can accelerate the cross-linking reaction of the resin in the coating, allowing the coating to solidify quickly at a lower temperature and shortening the construction cycle.
  4. Improve coating adhesion: Through chemical interaction with the substrate surface, tetramethylguanidine can enhance the adhesion between the coating and the substrate and improve the overall protective performance of the coating. .

Application cases and advantages

In practical applications, tetramethylguanidine is widely used as an additive in various high-temperature-resistant anti-corrosion coating formulations, especially in the protection of high-temperature equipment in petrochemical industry, thermal power stations, aerospace and other fields. For example, for high-temperature chimneys, heat exchangers, combustion chambers and other facilities, the addition of tetramethylguanidine can significantly improve the protective effect of coatings, extend the maintenance cycle of equipment, and reduce operating costs.

Research and development direction

Currently, research on the application of tetramethylguanidine in coating additives is still in depth. Researchers are working on developing new coating formulations containing tetramethylguanidine, aiming to further improve the comprehensive performance of coatings, including increasing the temperature range, enhancing UV aging resistance, and improving the flexibility and wear resistance of the coating.

Conclusion

Tetramethylguanidine, as an efficient high-temperature resistant and anti-corrosion coating additive, plays an irreplaceable role in improving coating performance. By enhancing the thermal stability, corrosion resistance and curing of coatings, tetramethylguanidine provides a comprehensive protection solution for industrial equipment, especially in high temperatures and corrosive environments. With the continuous deepening of research on tetramethylguanidine, we have reason to believe that it will become a bright star in the field of high temperature resistant anti-corrosion coatings in the future, bringing revolutionary breakthroughs to industrial protection.

Future Outlook

In the future, the application of tetramethylguanidine in the field of coating additives will develop in a more efficient and environmentally friendly direction. Researchers will work to develop more advanced synthesis processes to reduce production costs while reducing environmental impact. In addition, through combined use with other functional additives, tetramethylguanidine is expected to improve the overall performance of coatings while meeting more diversified and specialized market demands. With the advancement of science and technology and the evolution of market demand, the application prospects of tetramethylguanidine in the field of coating additives will be broader.

Extended reading:

N-Ethylcyclohexylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

CAS 2273-43-0/monobutyltin oxide/Butyltin oxide – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

T120 1185-81-5 di(dodecylthio) dibutyltin – Amine Catalysts (newtopchem.com)

DABCO 1027/foaming retarder – Amine Catalysts (newtopchem.com)

DBU – Amine Catalysts (newtopchem.com)

bismuth neodecanoate – morpholine

DMCHA – morpholine

amine catalyst Dabco 8154 – BDMAEE

2-ethylhexanoic-acid-potassium-CAS-3164-85-0-Dabco-K-15.pdf (bdmaee.net)

Dabco BL-11 catalyst CAS3033-62- 3 Evonik Germany – BDMAEE

Environmentally friendly production process of tetramethylguanidine

Environmentally friendly production process of tetramethylguanidine

Tetramethylguanidine (TMG for short) is an important organic compound that has attracted much attention due to its wide range of applications in chemical industry, pharmaceutical manufacturing, materials science and other fields. However, traditional tetramethylguanidine production methods are often accompanied by problems of environmental pollution and resource waste. In response to the global call for sustainable development and green chemistry, it is particularly important to develop an environmentally friendly tetramethylguanidine production process.

Key elements of environmentally friendly production processes

The environmentally friendly tetramethylguanidine production process should include the following key elements:

  1. Raw material selection: Prioritize the use of renewable or environmentally friendly raw materials to reduce dependence on fossil fuels.
  2. Optimization of reaction conditions: By precisely controlling reaction temperature, pressure and catalyst selection, the reaction efficiency is improved and the production of by-products and wastes is reduced.
  3. Solvent recycling: Use low-toxic, easily recyclable solvents and establish a solvent circulation system to reduce solvent consumption and environmental pollution.
  4. Waste treatment: Effectively treat waste water, waste gas and solid waste generated during the production process to ensure that emission standards are met.
  5. Energy Saving: Optimize the production process, reduce unnecessary energy consumption, and improve energy utilization efficiency.

Implementation of environmentally friendly production processes

Selection of raw materials and reaction paths

In terms of raw material selection, environmentally friendly production processes tend to use dimethylamine and sodium cyanide as starting materials instead of traditional cyanogen chloride, because the latter may produce toxic by-products during the preparation process. Dimethylamine and sodium cyanide react under mild conditions, which can effectively reduce the emission of harmful gases.

Catalyst and reaction conditions

The use of efficient catalysts, such as metal complexes or biological enzymes, can promote reactions at lower temperatures and pressures, reduce energy consumption and increase yields. In addition, precise control of reaction conditions, such as pH value and reaction time, is also key to reducing by-products.

Solvent and separation technology

Choose green solvents, such as water or supercritical carbon dioxide, to significantly reduce your environmental impact. At the same time, the use of advanced separation technologies, such as membrane separation, supercritical fluid extraction or continuous distillation, can effectively recover solvents and reduce waste generation.

Waste Management

For unavoidable waste, advanced treatment technologies such as biodegradation, catalytic oxidation or electrochemical treatment are used to convert them into harmless substances or valuable by-products.

Case analysis: improved production process

Based on the above principles, a typical environmentally friendly tetramethylguanidine production process may include:

  1. Raw material pretreatment: Dimethylamine and sodium cyanide are premixed and evenly dispersed to reduce unevenness in subsequent reactions.
  2. Catalytic reaction under mild conditions: Under controlled pH and temperature conditions, use an efficient catalyst to promote the reaction of dimethylamine and sodium cyanide to generate the target product tetramethylguanidine hydrochloride .
  3. Solvent recovery and product extraction: Using supercritical fluid extraction technology, tetramethylguanidine is extracted from the reaction mixture and the solvent is recovered for recycling.
  4. By-product treatment: Use biodegradation or catalytic oxidation technology to treat by-products generated during the reaction to reduce environmental pollution.
  5. Final product purification: Obtain high-purity tetramethylguanidine products through continuous distillation or other advanced separation techniques.

Conclusion

The environmentally friendly tetramethylguanidine production process can not only significantly reduce the negative impact on the environment, but also improve production efficiency and economic benefits. With the popularization of the concept of green chemistry and the continuous advancement of technology, future tetramethylguanidine production will pay more attention to the rational utilization of resources and environmental sustainability, and contribute to the construction of a green chemical industry.

Future Outlook

Future research directions will focus on developing more efficient and safer catalysts, exploring the utilization of renewable raw materials, and optimizing the energy efficiency of the entire production process. Through interdisciplinary cooperation and technological innovation, the production of tetramethylguanidine will gradually move towards a more environmentally friendly and sustainable path.
Further reading:

N-Ethylcyclohexylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

CAS 2273-43-0/monobutyltin oxide/Butyltin oxide – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

T120 1185-81-5 di(dodecylthio) dibutyltin – Amine Catalysts (newtopchem.com)

DABCO 1027/foaming retarder – Amine Catalysts (newtopchem.com)

DBU – Amine Catalysts (newtopchem.com)

bismuth neodecanoate – morpholine

DMCHA – morpholine

amine catalyst Dabco 8154 – BDMAEE

2-ethylhexanoic-acid-potassium-CAS-3164-85-0-Dabco-K-15.pdf (bdmaee.net)

Dabco BL-11 catalyst CAS3033-62- 3 Evonik Germany – BDMAEE

Application of dibutyltin dilaurate in polyvinyl chloride

Dibutyltin Dilaurate (DBTDL), as an important organotin compound, is used in many fields due to its excellent properties It has found applications in the polyvinyl chloride (Polyvinyl Chloride, PVC) industry, where it plays a key role. PVC is a widely used thermoplastic favored for its cost-effectiveness, durability and versatility. However, PVC is prone to degradation during processing and use, especially thermal degradation, which limits its application scope. In order to overcome this problem, the addition of stabilizers becomes crucial, and dibutyltin dilaurate is one of the most efficient PVC heat stabilizers.

Application in polyvinyl chloride

Thermal Stabilization

PVC easily decomposes at high temperatures to produce HCl, which not only reduces the physical properties of the product, but also accelerates further degradation processes. Dibutyltin dilaurate can effectively capture and neutralize the generated HCl, preventing it from further attacking the PVC chain, thereby inhibiting the thermal degradation process and improving the thermal stability of PVC. This stabilizing effect enables PVC products to maintain their original properties and extend their service life during processing and use.

Increase transparency

In soft and semi-soft PVC products, such as transparent films, pipes, artificial leather, etc., dibutyltin dilaurate can not only provide thermal stability, but also maintain or improve the transparency of the product. This is important for applications that require good visual effects, such as packaging and decorative materials.

Lubricity and processability

In addition to being a stabilizer, dibutyltin dilaurate also has good lubricity, which can improve the fluidity of PVC during extrusion, injection molding and other processing processes, reduce friction, make processing smoother, reduce energy consumption, and improve Productivity.

Weather resistance

PVC products used outdoors, such as window frames, fences, etc., need to withstand the effects of environmental factors such as ultraviolet rays and temperature changes. Dibutyltin dilaurate can enhance the weather resistance of PVC, allowing it to maintain good appearance and mechanical properties under harsh conditions.

Catalysis

In addition to its application in PVC, dibutyltin dilaurate is also an effective catalyst and can be used in the vulcanization process of polyurethane foam synthesis, polyester synthesis and room temperature vulcanization silicone rubber. In these polymerization reactions, it can promote the reaction rate and control the reaction process to obtain high-quality products.

Conclusion

In summary, the application of dibutyltin dilaurate in the polyvinyl chloride industry is very extensive and important. Whether it is improving thermal stability, enhancing transparency, improving processability, or improving weather resistance, it plays an indispensable role. However, it is worth noting that despite the many advantages of dibutyltin dilaurate, its potential impact on human health and the environment cannot be ignored. Therefore, when using this compound, it is necessary to strictly abide by relevant safety regulations, take appropriate protective measures, and explore and develop more environmentally friendly alternatives to achieve sustainable development.

Extended reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co ., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE