Application of high temperature resistant polyurethane hardener

High temperature resistant polyurethane hardener is an additive specially designed to improve the performance of polyurethane materials in high temperature environments. This type of hardener enables polyurethane materials to withstand high temperatures while maintaining good physical and chemical properties. The following is a detailed introduction to the application of high temperature resistant polyurethane hardeners.


Application of high temperature resistant polyurethane hardener

With the development of science and technology and the growth of industrial needs, the demand for materials that can maintain stable performance in high-temperature environments is also increasing. High-temperature-resistant polyurethane hardener improves the heat resistance, hardness and wear resistance of polyurethane materials, making them suitable for various high-temperature applications.

1. Characteristics of hardener

High temperature resistant polyurethane hardeners usually have the following characteristics:

  • High heat resistance: Able to remain stable at higher temperatures and will not lose hardness or deform due to rising temperatures.
  • Good chemical stability: It can still resist the erosion of chemical substances in high temperature environments.
  • High hardness and wear resistance: By increasing the cross-linking density, the hardness and wear resistance of the material are improved.
  • Low VOC: Meets environmental requirements and reduces emissions of volatile organic compounds.

2. Main ingredients

High temperature resistant polyurethane hardener usually contains the following main ingredients:

  • Isocyanate: Such as MDI (diphenylmethane diisocyanate) or TDI (toluene diisocyanate), etc., used to form polyurethane network.
  • Polyol: Choose polyols with good heat resistance, such as polyether polyols or polyester polyols.
  • Catalyst: Such as organotin catalyst or amine catalyst, used to accelerate the reaction process.
  • Fillers and additives: Including fillers such as nano-silica, as well as antioxidants, light stabilizers and other additives, used to improve the overall performance of the material.

3. Application fields

High temperature resistant polyurethane hardeners are widely used in many fields, including but not limited to:

  • Automotive Manufacturing: Used to produce automotive parts, such as parts in the engine compartment, insulation materials around the exhaust system, etc.
  • Aerospace: Sealing materials, insulation materials and coatings used in high-temperature environments in aircraft manufacturing.
  • Power industry: used for cable sheathing, insulation materials, etc., especially equipment operating under high temperature conditions.
  • Construction industry: Used in the manufacture of high-temperature resistant coatings, sealants and insulation materials.
  • Electronic appliances: Used to produce high-temperature resistant electronic component packaging materials, etc.

4. Specific application cases

  • Automotive engine parts: High-temperature resistant polyurethane hardener can be used to manufacture various parts under the hood, such as hoods, heat insulation pads, etc.
  • Aerospace sealing materials: In the aerospace industry, used to make seals that can withstand extreme temperature changes, such as those around aircraft engines.
  • Power cable sheath: Used to make cable sheath materials that can withstand high temperatures to protect cables from operating normally in high temperature environments.
  • High temperature resistant coating for construction: In the construction industry, it is used to manufacture exterior wall coatings, roof waterproof coatings, etc. These coatings need to maintain good performance in high temperature environments.
  • Electronic component packaging: Used to manufacture electronic component packaging materials that can withstand high temperatures to protect electronic equipment from operating normally in harsh environments.

5. Precautions for use

  • Mixing ratio: Mix hardener and base material strictly according to the recommended ratio to ensure performance.
  • Curing conditions: Control the curing temperature and time according to the requirements of the hardener to ensure that the material can be completely cured.
  • Safety Measures: Take appropriate safety measures during use, such as wearing protective gloves and glasses, and ensuring the work area is well ventilated.

6. Conclusion

High-temperature-resistant polyurethane hardener improves the heat resistance, hardness and wear resistance of polyurethane materials, allowing them to be used in high-temperature environments keep it steady. With the advancement of technology and the growth of industrial demand, the application scope of this type of hardener will become more and more extensive. In the future, as new material technologies and production processes continue to improve, we can expect to see more high-performance, high-temperature-resistant polyurethane hardeners appear on the market to meet a variety of complex application needs.


Please note that the above provides a general introduction. When using it specifically, it is recommended to refer to the relevant product manuals or consult professional technical personnel for more detailed technical support and suggestions.

Extended reading:

N-Ethylcyclohexylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

CAS 2273-43-0/monobutyltinoxide/Butyltin oxide – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

T120 1185-81-5 di(dodecylthio) dibutyltin – Amine Catalysts (newtopchem.com)

DABCO 1027/foaming retarder – Amine Catalysts (newtopchem.com)

DBU – Amine Catalysts (newtopchem.com)

bismuth neodecanoate – morpholine

DMCHA – morpholine

amine catalyst Dabco 8154 – BDMAEE

2-ethylhexanoic-acid-potassium-CAS-3164-85-0-Dabco-K-15.pdf (bdmaee.net)

Dabco BL-11 catalyst CAS3033-62- 3 Evonik Germany – BDMAEE

Environmentally friendly polyurethane hardener ingredients

Environmentally friendly polyurethane hardeners are developed to meet the growing needs for environmental protection. This type of hardener can not only effectively improve the hardness and wear resistance of polyurethane materials, but also has the characteristics of low VOC (volatile organic compound) content, non-toxic, and harmless. The following is a detailed introduction to the ingredients of environmentally friendly polyurethane hardener.


Environmentally friendly polyurethane hardener ingredients

As environmental awareness continues to increase, all walks of life are seeking more environmentally friendly alternatives. In the polyurethane industry, the development and application of environmentally friendly hardeners has become an important trend. Environmentally friendly polyurethane hardeners not only improve product performance but also reduce environmental impact.

1. Ingredient introduction

Environmentally friendly polyurethane hardeners usually contain the following main ingredients:

  • Isocyanates: Isocyanates used in environmentally friendly hardeners are usually low-VOC types, such as low-odor HDI (hexamethylene diisocyanate) trimer or isophorone diisocyanate (IPDI) etc.
  • Polyols: The polyols used in environmentally friendly polyurethane hardeners are usually polyols prepared from bio-based or renewable resources, such as castor oil polyols, soybean oil polyols, etc.
  • Catalyst: Environmentally friendly catalysts, such as low-odor organotin catalysts or amine catalysts, can promote the cross-linking reaction between isocyanates and polyols.
  • Additives: Including antioxidants, light stabilizers, etc., used to improve the aging resistance and weather resistance of the product.
  • Fillers: Such as nano-silica, etc., used to improve the hardness and wear resistance of the material.

2. Basis for ingredient selection

  • Low VOC: Choosing low VOC ingredients can reduce the emission of harmful substances and reduce potential risks to human health.
  • Bio-based raw materials: Polyols produced from renewable resources can reduce dependence on petroleum resources and reduce carbon footprint.
  • Compatibility: All ingredients need to have good compatibility to ensure that the hardener and polyurethane base material can be evenly dispersed to form a stable system.
  • Reactivity: The ingredients should be reactive enough to cross-link with the polyurethane base to form a dense network structure.

3. Examples of specific ingredients

The following is an example of the specific ingredients of an environmentally friendly polyurethane hardener:

  • Isocyanate: HDI trimer, 100 parts
  • Polyol: Castor oil modified polyether polyol (hydroxyl value approximately 56 mg KOH/g), 50 parts
  • Catalyst: low-odor organotin catalyst, 0.5 parts
  • Antioxidant: Antioxidant 1010, 0.5 part
  • Light stabilizer: UV absorber UV-P, 1 part
  • Filler: Nanosilica, 5 parts

4. Functions and effects of ingredients

  • Isocyanate: Reacts with polyols to form a polyurethane network, improving the hardness and wear resistance of the material.
  • Polyol: Reacts with isocyanate to form polyurethane segments, which affects the performance of the product.
  • Catalyst: Accelerates the reaction process and ensures rapid curing.
  • Antioxidants: Prevent material aging and extend service life.
  • Light stabilizer: Improve the light resistance of the material and reduce degradation caused by ultraviolet radiation.
  • Fillers: Increase hardness and wear resistance while improving the material’s heat resistance and dimensional stability.

5. Application cases

  • Architectural coatings: Environmentally friendly polyurethane hardeners are used in architectural coatings to improve the hardness and weather resistance of the coating and extend the maintenance cycle of the building.
  • Furniture surface treatment: Adding environmentally friendly hardeners to the surface coating of furniture can improve surface hardness and reduce scratches during daily use.
  • Sports venues: Environmentally friendly polyurethane hardeners are used in the construction of sports venues such as runways, which can improve the wear resistance of the venue and extend its service life.

6. Notes

  • Storage conditions: Environmentally friendly polyurethane hardener should be stored in a cool, dry place away from direct sunlight.
  • Mixing Ratios: Mix hardener with other ingredients in recommended ratios to ensure performance.
  • Safe use: Although environmentally friendly hardeners reduce the use of harmful substances, you still need to take appropriate safety measures during use, such as wearing protective gloves and glasses.

7. Conclusion

Environmentally friendly polyurethane hardeners not only improve the performance of polyurethane materials but also reduce their impact on the environment by using low-VOC, bio-based and other environmentally friendly ingredients. With the advancement of technology and the tightening of environmental regulations, environmentally friendly polyurethane hardeners will be widely used in more fields in the future.


Please note that the above provides a general introduction. When using it specifically, it is recommended to refer to the relevant product manuals or consult professional technical personnel for more detailed technical support and suggestions.

Extended reading:

N-Ethylcyclohexylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

CAS 2273-43-0/monobutyltin oxide/Butyltin oxide – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

T120 1185-81-5 di(dodecylthio) dibutyltin – Amine Catalysts (newtopchem.com)

DABCO 1027/foaming retarder – Amine Catalysts (newtopchem.com)

DBU – Amine Catalysts (newtopchem.com)

bismuth neodecanoate – morpholine

DMCHA – morpholine

amine catalyst Dabco 8154 – BDMAEE

2-ethylhexanoic-acid-potassium-CAS-3164-85-0-Dabco-K-15.pdf (bdmaee.net)

Dabco BL-11 catalyst CAS3033-62- 3 Evonik Germany – BDMAEE

Special hardener for polyurethane coatings

Special hardener for polyurethane coatings is a special hardener designed to improve the hardness, wear resistance, chemical resistance and other properties of polyurethane coatings additive. This type of hardener can not only improve the physical properties of the coating, but also maintain or enhance its original properties, such as gloss, adhesion and weather resistance. The following is a detailed introduction to special hardeners for polyurethane coatings.


Special hardener for polyurethane coatings

Polyurethane coatings are widely used in many industries due to their excellent performance, such as construction, automobiles, furniture, electronics and other fields. In order to further improve the performance of polyurethane coatings, especially in terms of hardness, special hardeners for polyurethane coatings have become an indispensable part.

1. Mechanism of action of hardener

Special hardeners for polyurethane coatings react with active ingredients in polyurethane coatings to form a denser cross-linked network, thereby improving the hardness and other physical properties of the coating. The addition of hardeners can make the paint surface harder, reduce damage caused by scratches and abrasions, and also improve its chemical resistance and weather resistance.

2. Classification of hardeners

Special hardeners for polyurethane coatings can be divided into several categories based on their chemical structure and functional properties:

  • Isocyanate hardener: This type of hardener contains multiple isocyanate groups, which can cross-link with the hydroxyl groups in polyurethane coatings to form a stronger coating film.
  • Epoxy resin hardener: Enhances the hardness and chemical resistance of the coating film by reacting the epoxy group with the hydroxyl or amine group.
  • Silane coupling agent: This type of hardener can improve the adhesion between the coating and the substrate, and can also increase the hardness of the coating film.
  • Other functional hardeners: Including certain special modifiers, such as polymers containing special functional groups, which can further improve the performance of the coating film.

3. Factors to consider when choosing a hardener

When choosing a suitable hardener for polyurethane coatings, you need to consider the following aspects:

  • Performance requirements: Depending on the application, there are different requirements for the performance of the coating, such as hardness, wear resistance, gloss, etc.
  • Reactivity: The hardener should have good reactivity and be able to react quickly with the active ingredients in the polyurethane coating.
  • Compatibility: Hardeners need to have good compatibility with other ingredients in the paint to avoid precipitation or delamination.
  • Environmental protection: Choose hardeners with low VOC (volatile organic compounds) content to comply with environmental regulations.

4. Application cases of hardener

  • Automobile coating: In automobile coating, the use of high-performance hardeners can significantly improve the hardness and scratch resistance of the body coating and extend the service life of the coating.
  • Architectural coatings: In building exterior wall coatings, the addition of hardeners can improve the weather resistance and pollution resistance of the coating and maintain the long-term beauty of the wall.
  • Furniture coatings: Polyurethane coatings for furniture can increase the hardness of the furniture surface by adding hardeners and reduce scratches and wear during daily use.

5. Common brand recommendations

  • Shuode: The polyurethane hardener provided by Shuode is known for its high performance and stability and is suitable for many types of polyurethane coatings.
  • Longying: Although the LYH-210 textile hardening resin launched by Longying is mainly used for textile post-processing, it is also suitable for polyurethane coatings that require increased hardness.
  • Dulux: Hardener products under the Dulux brand, such as DM-1 model, are suitable for hardening treatment on concrete surfaces and can also be used in polyurethane coatings to improve their hardness and wear resistance. sex.

6. Precautions for use

  • Mixing Ratios: Mix hardener and coating strictly according to the recommended ratios provided by the manufacturer to ensure performance.
  • Conditions of use: Pay attention to the use temperature and humidity conditions of the hardener to avoid affecting its performance.
  • Safety: Take appropriate safety measures during use, such as wearing protective gloves and glasses, and ensuring the work area is well ventilated.

7. Conclusion

Special hardeners for polyurethane coatings play an important role in improving coating performance. Through reasonable selection and use of hardeners, not only the hardness of the coating film can be improved, but also its wear resistance, chemical resistance and weather resistance can be enhanced to meet the needs of different application scenarios. In actual applications, the appropriate type of hardener should be selected according to specific needs and the manufacturer’s operating instructions should be strictly followed.


Please note that the above provides a general introduction to hardeners specifically designed for polyurethane coatings. When using it specifically, it is recommended to refer to the relevant product manuals or consult professional technical personnel for more detailed technical support and suggestions.

Extended reading:

N-Ethylcyclohexylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

CAS 2273-43-0/monobutyltin oxide/Butyltin oxide – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

T120 1185-81-5 di(dodecylthio) dibutyltin – Amine Catalysts (newtopchem.com)

DABCO 1027/foaming retarder – Amine Catalysts (newtopchem.com)

DBU – Amine Catalysts (newtopchem.com)

bismuth neodecanoate – morpholine

DMCHA – morpholine

amine catalyst Dabco 8154 – BDMAEE

2-ethylhexanoic-acid-potassium-CAS-3164-85-0-Dabco-K-15.pdf (bdmaee.net)

Dabco BL-11 catalyst CAS3033-62- 3 Evonik Germany – BDMAEE