Physical and chemical properties of dibutyltin dilaurate

Dibutyltin Dilaurate (DBTDL) is a multifunctional organotin compound that is widely used in many countries because of its unique physical and chemical properties. It has a wide range of applications in various industrial fields. The main physical and chemical properties of dibutyltin dilaurate will be introduced in detail below.

Basic information

  • Chemical formula: C32H64O4Sn
  • CAS number: 77-58-7
  • Molecular weight: about 631.56 g/mol
  • English name: Dibutyltin dilaurate
  • Alias: dibutyltin dilaurate, dibutyltin dilaurate

Appearance and status

Dibutyltin dilaurate usually appears as a light yellow or colorless oily liquid at room temperature. When the temperature drops to a certain level, it will transform into white crystals. This change in morphology reflects the change in the physical state of the compound with temperature.

Solubility

  • Solubility in organic solvents: Dibutyltin dilaurate is easily soluble in a variety of organic solvents, including but not limited to benzene, toluene, carbon tetrachloride, ethyl acetate, chloroform, acetone and petroleum ethers, and all industrial plasticizers.
  • Water solubility: Insoluble in water, which is a common feature of most organotin compounds.

Thermal stability and boiling point

  • Boiling Point: Dibutyltin dilaurate has a high boiling point, which means it vaporizes at higher temperatures. This is crucial for its stability in industrial applications.
  • Thermal stability: Good thermal stability allows dibutyltin dilaurate to maintain its structural integrity under heating conditions and will not easily decompose. This characteristic makes it suitable for use in polyvinyl chloride. Very effective as a heat stabilizer in (PVC) processing.

Density

  • Density: The density of dibutyltin dilaurate is usually higher than that of water, but the specific value will vary depending on the test conditions.

Refractive index

  • Refractive Index: The refractive index of dibutyltin dilaurate is an important parameter for applications where optical properties are sensitive.

Reactivity

  • Catalytic activity: Dibutyltin dilaurate is an efficient catalyst, especially in the catalysis of polyurethane foam synthesis, polyester synthesis, room temperature vulcanization silicone rubber, and polyvinyl chloride plastic additives. field, its catalytic activity makes it one of the preferred organotin catalysts.
  • Chemical stability: In most cases, dibutyltin dilaurate exhibits good chemical stability, but under certain conditions, such as strong acid, strong alkali or extreme oxidation environment, It may break down or react.

Security and Storage

  • Toxicity: Dibutyltin dilaurate is an organotin compound. Such substances usually have certain toxicity, especially may have adverse effects on the reproductive system and nervous system. Therefore, appropriate safety measures need to be followed during handling and storage, such as wearing personal protective equipment, ensuring good ventilation, and avoiding inhalation of vapors and skin contact.
  • Storage conditions: It is recommended to store in a dry and cool area with proper ventilation to avoid the mixing of moisture or other impurities. At low temperatures (?8°C), the compound may crystallize, but it can return to liquid state after heating without affecting its performance.

Structure and composition

The molecular structure of dibutyltin dilaurate contains two butyltin groups and two lauric acid groups. This structure gives it unique physical and chemical properties, making it excellent in a variety of industrial applications.

Conclusion

The physical and chemical properties of dibutyltin dilaurate determine its wide application in many industrial fields, from catalysts to stabilizers, to various chemical synthesis reaction. However, considering its potential health and environmental risks, safety guidelines should be strictly followed when used, while safer alternatives are actively explored to promote the sustainable development of the chemical industry.

Extended reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co ., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE

Dibutyltin dilaurate uses

Dibutyltin Dilaurate (DBTDL) is a multifunctional organotin compound that plays a vital role in multiple industrial fields because of its unique catalytic and stabilizing properties. The various uses of dibutyltin dilaurate are discussed in detail below.

Polyvinyl chloride (PVC) industry
Heat Stabilizer
In PVC processing, dibutyltin dilaurate serves as an efficient thermal stabilizer, which can significantly improve the thermal stability of PVC and prevent degradation under high-temperature processing conditions. It can effectively capture and neutralize HCl generated during the degradation of PVC, preventing further chain breakage, thereby maintaining the physical properties of PVC products and extending their service life.

Lubricants
In addition to its stabilizing effect, dibutyltin dilaurate is also used in the processing of PVC due to its excellent lubrication properties, improving the fluidity of materials in extruders or injection molding machines, reducing friction during processing, thereby improving production efficiency. and reduce energy consumption.

Polyurethane (PU) Industry
Catalyst
Dibutyltin dilaurate is one of the commonly used catalysts in the synthesis of polyurethane foam. During the formation of polyurethane, it can accelerate the reaction between isocyanate and polyol, control the foaming process, and ensure the uniformity of the foam and the quality of the product. In the manufacture of rigid polyurethane foam, it can produce a synergistic effect with amino catalysts and is suitable for rigid foam manufacturing that requires high-speed catalysis.

Organic synthesis and polymerization
Cross-linking reaction catalyst
Dibutyltin dilaurate serves as a catalyst in organic synthesis and can promote various cross-linking reactions, such as cross-linking of acrylate rubber and carboxyl rubber, and transesterification reactions in polyester synthesis.

Room temperature vulcanization silicone rubber catalyst
During the curing process of room temperature vulcanization (RTV) silicone rubber, dibutyltin dilaurate can speed up the cross-linking speed of silicone rubber, shorten the curing time, and improve production efficiency.

Other industrial applications
Elastomers and sealants
Dibutyltin dilaurate can be used in the production of elastomers, adhesives and sealants to improve the processing properties of these materials and the performance of the products.

Coatings and Paints
In paints and paints, dibutyltin dilaurate acts as a catalyst to promote the curing of the coating and improve the hardness and adhesion of the coating film.

Environmental Application
In some environmental engineering applications, dibutyltin dilaurate can be used as a catalyst for certain chemical reactions in wastewater treatment processes to help remove harmful substances.

Electronics and Semiconductor Industry
In electronic packaging materials, dibutyltin dilaurate serves as a catalyst to promote the curing of epoxy resin and silicone rubber, forming a stable packaging layer and protecting electronic components from the external environment.

Research and Laboratory Applications
In scientific research and laboratories, dibutyltin dilaurate serves as a catalyst and participates in a variety of organic synthesis reactions, such as esterification, condensation, addition reactions, etc., providing chemists with an efficient research tool.

Summary
Due to its excellent catalytic performance and stabilizing effect, dibutyltin dilaurate is widely used in chemical, plastics, rubber, coatings, electronics and other industries. However, in view of its possible risks to the environment and human health, relevant industries must strictly abide by safe operating procedures and environmental regulations when using dibutyltin dilaurate, and at the same time continue to explore and develop safer and more environmentally friendly alternatives. Promote the sustainable development of the entire industry. With the advancement of science and technology and the discovery of new materials, more catalysts and stabilizers that can meet industrial needs and are environmentally friendly are expected to emerge in the future.
Further reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co ., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE

Application of anhydrous tin tetrachloride in semiconductor industry

Anhydrous tin tetrachloride (SnCl4), as an important inorganic compound, plays a key role in multiple industries, especially in the semiconductor industry. Its chemical stability, reactivity, and volatility at high temperatures make it one of the key precursors for manufacturing semiconductor materials. The specific applications of anhydrous tin tetrachloride in the semiconductor industry are discussed in detail below.

Semiconductor thin film deposition

One of the notable applications of anhydrous tin tetrachloride in the semiconductor industry is as a metal source during thin film deposition processes. Anhydrous tin tetrachloride can be used to form high-quality tin-based films through techniques such as chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition (PVD). These films play a vital role in electronic devices, optoelectronic devices and solar cells.

Chemical Vapor Deposition (CVD)

In the CVD process, anhydrous tin tetrachloride is used as a tin source and reacts with hydrogen, ammonia or other reactive gases at high temperatures to form a thin film of metallic tin or tin compounds. Such films can be used to make various types of semiconductor devices, such as field-effect transistors (FETs), metal-insulator-metal (MIM) capacitors and microelectromechanical systems (MEMS) components.

Atomic Layer Deposition (ALD)

ALD is a technology for precisely controlling film thickness and is particularly suitable for applications requiring extremely high uniformity and extremely thin layers. Anhydrous tin tetrachloride can be used to deposit ultra-thin and highly uniform tin-based films in the ALD process, which is crucial for manufacturing high-performance nanoscale electronic devices.

Preparation of tin-based alloy

In semiconductor packaging and interconnection technology, anhydrous tin tetrachloride is also used to prepare various tin-based alloys, such as tin-lead alloy (Sn-Pb), lead-free solder (such as Sn-Ag-Cu), etc. . These alloys have good welding properties and reliability and are critical for the packaging of semiconductor chips and the assembly of circuit boards.

Photovoltaic technology

In the field of photovoltaics, anhydrous tin tetrachloride can be used to make precursor solutions for perovskite solar cells. Perovskite materials have received widespread attention due to their excellent photoelectric properties, and anhydrous tin tetrachloride helps improve the quality and stability of perovskite films, thereby improving the efficiency and lifespan of solar cells.

Other applications

In addition to the above applications, anhydrous tin tetrachloride also plays a role in etching, cleaning and passivation in the semiconductor manufacturing process. It can help remove unwanted layers of material, clean surfaces, and form protective films to enhance the performance and durability of semiconductor devices.

Safety and Handling

It is worth noting that anhydrous tin tetrachloride is highly corrosive and toxic, so its use in the semiconductor industry requires strict safety measure. Proper personal protective equipment and ventilation are essential to prevent inhalation of its vapors or contact with skin and eyes.

In short, anhydrous tin tetrachloride plays a multi-faceted role in the semiconductor industry, from thin film deposition to alloy preparation to the application of photovoltaic technology, all reflecting its indispensable value. As semiconductor technology continues to advance, the application scope and importance of anhydrous tin tetrachloride is expected to continue to expand.


Please note that this article provides an overview of the application of anhydrous tin tetrachloride in the semiconductor industry. Specific technical details and developments may require reference to new scientific research documents and technical reports. Additionally, when handling any chemical, safety always comes first and all applicable safety regulations and guidelines must be followed.
Further reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co ., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE